1,703 research outputs found

    Low hydrological connectivity after summer drought inhibits DOC export in a forested headwater catchment

    Get PDF
    Understanding the controls on event-driven dissolved organic carbon (DOC) export is crucial as DOC is an important link between the terrestrial and the aquatic carbon cycles. We hypothesized that topography is a key driver of DOC export in headwater catchments because it influences hydrological connectivity, which can inhibit or facilitate DOC mobilization. To test this hypothesis, we studied the mechanisms controlling DOC mobilization and export in the Große Ohe catchment, a forested headwater in a mid-elevation mountainous region in southeastern Germany. Discharge and stream DOC concentrations were measured at an interval of 15 min using in situ UV-Vis (ultraviolet–visible) spectrometry from June 2018 until October 2020 at two topographically contrasting subcatchments of the same stream. At the upper location (888 m above sea level, a.s.l.), the stream drains steep hillslopes, whereas, at the lower location (771 m a.s.l.), it drains a larger area, including a flat and wide riparian zone. We focus on four events with contrasting antecedent wetness conditions and event size. During the events, in-stream DOC concentrations increased up to 19 mg L−1 in comparison to 2–3 mg L−1 during baseflow. The concentration–discharge relationships exhibited pronounced but almost exclusively counterclockwise hysteresis loops which were generally wider in the lower catchment than in the upper catchment due to a delayed DOC mobilization in the flat riparian zone. The riparian zone released considerable amounts of DOC, which led to a DOC load up to 7.4 kg h−1. The DOC load increased with the total catchment wetness. We found a disproportionally high contribution to the total DOC export of the upper catchment during events following a long dry period. We attribute this to the low hydrological connectivity in the lower catchment during drought, which inhibited DOC mobilization, especially at the beginning of the events. Our data show that not only event size but also antecedent wetness conditions strongly influence the hydrological connectivity during events, leading to a varying contribution to DOC export of subcatchments, depending on topography. As the frequency of prolonged drought periods is predicted to increase, the relative contribution of different subcatchments to DOC export may change in the future when hydrological connectivity will be reduced more often.</p

    Robustness of sweeping-window arc therapy treatment sequences against intrafractional tumor motion

    Get PDF
    Purpose: Due to the potentially periodic collimator dynamic in volumetric modulated arc therapy (VMAT) dose deliveries with the sweeping-window arc therapy (SWAT) technique, additional manifestations of dosimetric deviations in the presence of intrafractional motion may occur. With a fast multileaf collimator (MLC), and a flattening filter free dose delivery, treatment times close to 60 s per fraction are clinical reality. For these treatment sequences, the human breathing period can be close to the collimator sweeping period. Compared to a random arrangement of the segments, this will cause a further degradation of the dose homogeneity. Methods: Fifty VMAT sequences of potentially moving target volumes were delivered on a two dimensional ionization chamber array. In order to detect interplay effects along all three coordinate axes, time resolved measurements were performed twice-with the detector aligned in vertical (V) or horizontal (H) orientation. All dose matrices were then moved within a simulation software by a time-dependent motion vector. The minimum relative equivalent uniform dose EUDr,m for all breathing starting phases was determined for each amplitude and period. Furthermore, an estimation of periods with minimum EUD was performed. Additionally, LINAC logfiles were recorded during plan delivery. The MLC, jaw, gantry angle, and monitor unit settings were continuously saved and used to calculate the correlation coefficient between the target motion and the dose weighed collimator motion component for each direction (CC, LR, AP) separately. Results: The resulting EUDr,m were EUDr,m(CCV) = (98.3 +/- 0.6)%, EUDr,m(CCH) = (98.6 +/- 0.5)%, EUDr,m(AP(V)) = (97.7 +/- 0.9)%, and EUDr,m(LRH) = (97.8 +/- 0.9)%. The overall minimum relative EUD observed for 360. arc midventilation treatments was 94.6%. The treatment plan with the shortest period and a minimum relative EUD of less than 97% was found at T = 6.1 s. For a partial 120 degrees arc, an EUDr,m = 92.0% was found. In all cases, a correlation coefficient above 0.5 corresponded to a minimum in EUD. Conclusions: With the advent of fast VMAT delivery techniques, nonrobust treatment sequences for human breathing patterns can be generated. These sequences are characterized by a large correlation coefficient between a target motion component and the corresponding collimator dynamic. By iteratively decreasing the maximum allowed dose rate, a low correlation coefficient and consequentially a robust treatment sequence are ensured. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License

    Cooperative role of antibodies against heat-labile toxin and the EtpA adhesin in preventing toxin delivery and intestinal colonization by enterotoxigenic Escherichia coli

    Get PDF
    Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrheal disease in developing countries, where it is responsible for hundreds of thousands of deaths each year. Vaccine development for ETEC has been hindered by the heterogeneity of known molecular targets and the lack of broad-based sustained protection afforded by existing vaccine strategies. In an effort to explore the potential role of novel antigens in ETEC vaccines, we examined the ability of antibodies directed against the ETEC heat-labile toxin (LT) and the recently described EtpA adhesin to prevent intestinal colonization in vivo and toxin delivery to epithelial cells in vitro. We demonstrate that EtpA is required for the optimal delivery of LT and that antibodies against this adhesin play at least an additive role in preventing delivery of LT to target intestinal cells when combined with antibodies against either the A or B subunits of the toxin. Moreover, vaccination with a combination of LT and EtpA significantly impaired intestinal colonization. Together, these results suggest that the incorporation of recently identified molecules such as EtpA could be used to enhance current approaches to ETEC vaccine development

    Immunogenicity and protective efficacy against enterotoxigenic Escherichia coli colonization following intradermal, sublingual, or oral vaccination with EtpA adhesin

    Get PDF
    Enterotoxigenic Escherichia coli (ETEC) strains are a common cause of diarrhea. Extraordinary antigenic diversity has prompted a search for conserved antigens to complement canonical approaches to ETEC vaccine development. EtpA, an immunogenic extracellular ETEC adhesin relatively conserved in the ETEC pathovar, has previously been shown to be a protective antigen following intranasal immunization. These studies were undertaken to explore alternative routes of EtpA vaccination that would permit use of a double mutant (R192G L211A) heat-labile toxin (dmLT) adjuvant. Here, oral vaccination with EtpA adjuvanted with dmLT afforded significant protection against small intestinal colonization, and the degree of protection correlated with fecal IgG, IgA, or total fecal antibody responses to EtpA. Sublingual vaccination yielded compartmentalized mucosal immune responses with significant increases in anti-EtpA fecal IgG and IgA, and mice vaccinated via this route were also protected against colonization. In contrast, while intradermal (i.d.) vaccination achieved high levels of both serum and fecal antibodies against both EtpA and dmLT, mice vaccinated via the i.d. route were not protected against subsequent colonization and the avidity of serum IgG and IgA EtpA-specific antibodies was significantly lower after i.d. immunization compared to other routes. Finally, we demonstrate that antiserum from vaccinated mice significantly impairs binding of LT to cognate GM1 receptors and shows near complete neutralization of toxin delivery by ETEC in vitro. Collectively, these data provide further evidence that EtpA could complement future vaccine strategies but also suggest that additional effort will be required to optimize its use as a protective immunogen

    Review of pyronaridine anti-malarial properties and product characteristics.

    Get PDF
    Pyronaridine was synthesized in 1970 at the Institute of Chinese Parasitic Disease and has been used in China for over 30 years for the treatment of malaria. Pyronaridine has high potency against Plasmodium falciparum, including chloroquine-resistant strains. Studies in various animal models have shown pyronaridine to be effective against strains resistant to other anti-malarials, including chloroquine. Resistance to pyronaridine appears to emerge slowly and is further retarded when pyronaridine is used in combination with other anti-malarials, in particular, artesunate. Pyronaridine toxicity is generally less than that of chloroquine, though evidence of embryotoxicity in rodents suggests use with caution in pregnancy. Clinical pharmacokinetic data for pyronaridine indicates an elimination T1/2 of 13.2 and 9.6 days, respectively, in adults and children with acute uncomplicated falciparum and vivax malaria in artemisinin-combination therapy. Clinical data for mono or combined pyronaridine therapy show excellent anti-malarial effects against P. falciparum and studies of combination therapy also show promise against Plasmodium vivax. Pyronaridine has been developed as a fixed dose combination therapy, in a 3:1 ratio, with artesunate for the treatment of acute uncomplicated P. falciparum malaria and blood stage P. vivax malaria with the name of Pyramax® and has received Positive Opinion by European Medicines Agency under the Article 58 procedure

    Highly conserved type 1 pili promote enterotoxigenic E. coli pathogen-host interactions

    Get PDF
    Enterotoxigenic Escherichia coli (ETEC), defined by their elaboration of heat-labile (LT) and/or heat-stable (ST) enterotoxins, are a common cause of diarrheal illness in developing countries. Efficient delivery of these toxins requires ETEC to engage target host enterocytes. This engagement is accomplished using a variety of pathovar-specific and conserved E. coli adhesin molecules as well as plasmid encoded colonization factors. Some of these adhesins undergo significant transcriptional modulation as ETEC encounter intestinal epithelia, perhaps suggesting that they cooperatively facilitate interaction with the host. Among genes significantly upregulated on cell contact are those encoding type 1 pili. We therefore investigated the role played by these pili in facilitating ETEC adhesion, and toxin delivery to model intestinal epithelia. We demonstrate that type 1 pili, encoded in the E. coli core genome, play an essential role in ETEC virulence, acting in concert with plasmid-encoded pathovar specific colonization factor (CF) fimbriae to promote optimal bacterial adhesion to cultured intestinal epithelium (CIE) and to epithelial monolayers differentiated from human small intestinal stem cells. Type 1 pili are tipped with the FimH adhesin which recognizes mannose with stereochemical specificity. Thus, enhanced production of highly mannosylated proteins on intestinal epithelia promoted FimH-mediated ETEC adhesion, while conversely, interruption of FimH lectin-epithelial interactions with soluble mannose, anti-FimH antibodies or mutagenesis of fimH effectively blocked ETEC adhesion. Moreover, fimH mutants were significantly impaired in delivery of both heat-stable and heat-labile toxins to the target epithelial cells in vitro, and these mutants were substantially less virulent in rabbit ileal loop assays, a classical model of ETEC pathogenesis. Collectively, our data suggest that these highly conserved pili play an essential role in virulence of these diverse pathogens
    • …
    corecore